Function Operations

In business, the term *profit* is used to describe the difference between the money the business earns (revenue) and the money the business spends (cost).

A. Grooming USA charges \$25 for every pet that is groomed. Let *x* represent the number of pets groomed in a month. Define a revenue function for the business.

Enter your answer.

B. Materials and labor for each pet groomed cost \$15. The business also has fixed costs of \$1,000 each month. Define a cost function for this business.

Enter your answer.

C. Last month, Grooming USA groomed 95 pets. Did they earn a profit? What would the profit be if the business groomed 110 pets in a month?

Enter your answer.

D. Generalize Explain your procedure for calculating the profit for Grooming USA. Suppose you wanted to calculate the profit for several different scenarios. How could you simplify your process?

Enter your answer.		

Examples: Add or subtract the following functions.

1. Given f x = 3x + 4 and $g x = x^2 - 5x + 2$, find f + g and its domain.

2. Given f x = 3x + 4 and $g x = x^2 - 5x + 2$, find f - g and its domain.

3. Given $f(x) = 2x^2 + 7x - 1$ and g(x) = 3 - 2x, find f + g and its domain.

4. Given $f(x) = 2x^2 + 7x - 1$ and g(x) = 3 - 2x, find f - g and its domain.

Examples: Multiply the following functions and find the domain of the resulting functions.

5.

The demand d, in units sold, for a company's new brand of cell phone at price x, in dollars, is d(x) = 5,000 - 10x. What is the company's expected revenue from cell phone sales in terms of the price, x?

6. Suppose demand, d, for a company's product at cost, x, is predicted by the function $d x = -0.25x^2 + 1000$, and the price, p, that the company can charge for the product is given by p x = x + 16. Find the company's revenue function.

Examples: Divide the following functions.

7. Given f(x) = x - 7 and $g(x) = 2x^2 - 13x - 7$, find $\frac{f}{g}$ and its domain.

8. Given f(x) = x - 3 and $g(x) = x^2 - x - 6$, find $\frac{f}{g}$ and its domain.

9. Given $f(x) = x^2 - 3x - 18$ and g(x) = x + 3, find $\frac{f}{g}$ and its domain.

Examples: Find the following compositions of functions.

10. Given $f(x) = x^2$ and g(x) = x + 1, find f(g(3)).

11. Given f(x) = 2x - 1 and g(x) = 3x, find f(g(2)).

Examples: Find the following compositions of functions and the domain of the resulting functions.

12. Given $f(x) = x^2$ and g(x) = x + 1, find f(g(x)).

13. Given f(x) = 2x - 1 and g(x) = 3x, find f(g(x)).

14. Given $f(x) = \overline{x+7}$ and g(x) = 2x-5, find $(f \circ g)(x)$.

15. Given $f(x) = x^2 + x + 2$ and g(x) = 4 - x, find $(f \circ g)(x)$.

16. Given $f(x) = x^2 + 1$ and g(x) = x - 5, find $(f \circ g)(x)$.

CONCEPT SUMMARY Function Operations					
	Add or Subtract Functions	Multiply or Divide Functions	Compose Functions		
ALGEBRA	(f + g)(x) = f(x) + g(x) (f - g)(x) = f(x) - g(x)	$(f \cdot g)(x) = f(x) \cdot g(x)$ $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$	$(f \circ g)(x) = f(g(x))$ $(g \circ f)(x) = g(f(x))$		
WORDS	The domain of the sum or difference of <i>f</i> and <i>g</i> is the intersection of the domain of <i>f</i> and the domain of <i>g</i> .	The domain is the set of all real numbers for which f and g and the new function are defined.	The domain of $f \circ g$ is the set of all real numbers x , in the domain of g , such that $g(x)$ is in the domain of f .		
NUMBERS	For $f(x) = 3x + 5$ and g(x) = x - 3, $f + g =(3x + 5) + (x - 3) = 4x + 2and f - g = (3x + 5) -(x - 3) = 2x + 8$	For $f(x) = 3x + 5$ and $g(x) = x - 3$, $f \cdot g =$ $(3x + 5)(x - 3) = 3x^2 -$ $4x - 15$ and $\frac{f}{g} = \frac{3x + 5}{x - 3}$ for $x \neq 3$	For $f(x) = 3x + 5$ and $g(x) = x - 3$, $f \circ g =$ 3(x - 3) + 5 = 3x - 4 and $g \circ f = (3x + 5) - 3 =$ 3x + 2		